

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 14 of 102

3.2.4 Card and Reader Detection

The OMNIKEY Workbench creates a separate entry for each available OMNIKEY reader
interface in the application table. The entries indicate their respective reader names - the
same names you use within the PC/SC framework. Click an entry to open the reader’s
information and settings.

For a quick connectivity test of your contactless card,

1. Select the OMNIKEY CardMan 5x21-CL 0 tab

2. Place a contactless card on the reader.

3. When the card is detected, the Status field switches from No smart card inserted to
Smart card inserted and the ATR field displays the card’s ATR.

See Section 4.2 ATR Generation, for further information on how the Answer to Reset (ATR)
is generated for contactless smart cards.

The OMNIKEY Workbench has an internal flat database that allows a quick lookup of the
ATR. If it is a known card, a description displays in the Smart Card Name field. For
contactless cards the card’s unique ID (UID) displays in the Smart Card Name field and in
the Protocol field the card standard for example, T=CL and the selected baud rate displays.

Figure 4: Reader View - No Smart Card

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 15 of 102 January 2015

Figure 5: Reader View - Smart Card Inserted

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 16 of 102

3.2.5 Card Type Detection and RFID Settings

OMNIKEY Contactless Smart Card reader supports multiple 13.56 MHz contactless
standards and protocols including ISO14443A, ISO14443B, ISO15694, iCLASS, I-CODE.
Acquire information about a card within the RFID field in a predefined search order. With
built-in anti-collision, once a card is detected it is the only card in which the reader is
connected.

The OMNIKEY Workbench has a RFID Settings tab within the reader view that allows
configuration of the reader card and their respective search order. See Section 3.2.4 Card
and Reader Detection.

Figure 6: RFID Settings

The left pane contains a list of active card types. The right pane contains a list of available
card types that are supported by the reader but are not included in the card search. Move
card types from the left to the right pane using the and buttons. Change the search
order with the and buttons.

Activate this setting using the Apply button. The Reset button discards any unsaved
changes.

Note: The search order is forward-looking to improve system performance. The last
successfully detected card type automatically moves to the top of the search order,
regardless of its position within the order set on the RFID Settings tab.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 17 of 102 January 2015

3.2.6 Air Interface Baud Rate Configuration

For ISO 14443 cards, the air interface transmission speed can be 106 kbps, 212 kbps, 424
kbps, or 848 kbps. By default, the contactless interface is set to 424 kbps. Change the
interface transmission speed to a different value through the OMNIKEY Workbench
Baudrate settings tab.

Figure 7: RFID Settings

To view or change the baud rate, select the card type (ISO14443A or ISO14443B) and
change the maximum Baud Rate field. Finalize your setting, click Apply.

Figure 8: Baud Rate Settings

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 18 of 102

4 PC/SC 2.0
With the OMNIKEY 5x21 PC/SC driver, access ISO14443A/B or ISO15693 contactless cards
through the same framework as ISO7816 contact cards. This makes card integration a snap
for any developer who is already familiar with PC/SC. Even valuable PC/SC resource
manager functions, such as card tracking, are available for contactless card integration.

The Microsoft® Developer Network (MSDN®) Library contains valuable information and a
complete documentation of the SCard API within the MSDN Platform SDK.

See http://msdn.microsoft.com/en-us/library/ms953432.aspx.

You can directly access contactless CPU cards through the PC/SC driver. For storage cards
other than MIFARE®, an additional library – the OMNIKEY synchronous API – is necessary.
Whether using direct PC/SC access or the OMNIKEY synchronous API, only a small set of
functions are required to write your first hello card program.

 Integrate your card through:
 PC/SC 2.0 compliant APDU’s OMNIKEY Synchronous API
MIFARE YES YES

iCLASS NO YES

LRI64 YES NO

4.1 How to Access Contactless Cards through PC/SC
The following steps provide a guideline to create your first contactless smart card
application using industry standard, PC/SC compliant API function calls. The function
definitions provided are taken verbatim from the MSDN Library [MSDNLIB]. For additional
descriptions of these and other PC/SC functions provided by the Microsoft Windows
PC/SC smart card components, refer directly to the MSDN Library. See
http://msdn.microsoft.com/en-us/library/ms953432.aspx.

1. Establish Context
This step initializes the PC/SC API and allocates all resources necessary for a smart
card session. The SCardEstablishContext function establishes the resource manager
context (scope) within which database operations is performed.

LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

2. Get Status Change
Check the status of the reader for card insertion, removal, or availability of the reader.
This SCardGetStatusChange function blocks execution until the current availability of
the cards in a specific set of readers change. The caller supplies a list of monitored
readers and the maximum wait time (in milliseconds) for an action to occur on one of
the listed readers.
LONG SCardGetStatusChange(IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderStates,
 IN DWORD cReaders);

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 19 of 102 January 2015

3. List Readers
Gets a list of all PC/SC readers using the SCardListReaders function. Look for
OMNIKEY CardMan 5x21-CL 0 in the returned list. If multiple OMNIKEY Contactless
Smart Card readers are connected to your system, they will be enumerated.

Example: OMNIKEY CardMan 5x21-CL 1, and OMNIKEY CardMan 5x21-CL 2.

Analyze the complete string. OMNIKEY CardMan 5x21 also has a contact interface.
Look for -CL in the reader name to ensure you are referring to the contactless
interface in the following calls.
LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

4. Connect
Connect to the card. The SCardConnect function establishes a connection (using a
specific resource manager context) between the calling application and a smart card
contained by a specific reader. If no card exists in the specified reader, an error is
returned.

LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

5. Exchange Data and Commands with the Card
Exchange command and data through APDUs. The SCardTransmit function sends a
service request to the smart card, expecting to receive data back from the card.
LONG SCardTransmit(IN SCARDHANDLE hCard,
 IN LPCSCARD_I0_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 IN OUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 IN OUT LPDWORD pcbRecvLength);

Note: For unsupported PC/SC 2.0 storage cards, call an OMNIKEY proprietary API
function such as SCardCLICCTransmit instead. This function exposes additional
functionality of the OMNIKEY 5x21-CL reader that is not yet defined in PC/SC
standards. Otherwise, you are still using the standard PC/SC framework to track
cards, list readers, etc. Even the smart card handle is the same.

6. Disconnect
It is not necessary to disconnect the card after the completion of transactions, but it
is recommended. The SCardDisconnect function terminates a connection previously
opened between the calling application and a smart card in the target reader.

LONG SCardDisconnect(IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

7. Release
This step ensures all system resources are released. The SCardReleaseContext
function closes an established resource manager context, freeing any resources
allocated under that context.
LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 20 of 102

4.2 ATR Generation
Unlike contact cards, contactless cards do not generate an ATR. Instead, they generate an
Answer to Select (ATS). To make contactless cards available within the PC/SC framework,
OMNIKEY Contactless Smart Card reader generates a PC/SC compliant ATR according to
PC/SC v2.01.

Download the documents from the PC/SC Workgroup at the following web address:
http://www.pcscworkgroup.com/specifications/specdownload.php.

4.2.1 CPU Cards

Contactless smart cards (cards with a CPU) expose their ATS or information bytes through
ATR mapping according to PC/SC 2.01 - Part 3: Requirements for PC-Connected Interface
Devices, section 3.1.3.2.3.1 Contactless Smart Cards, Table 3.5.

4.2.2 Storage Cards

The ATR of storage cards (for example, cards without a CPU) is composed as described in
PC/SC 2.01 - Part 3: Requirements for PC-Connected Interface Devices, section 3.1.3.2.3.2
Contactless Storage Cards, Table 3.6. For the host application to identify a storage and
card type properly, its standard and card name is mapped according to PC/SC 2.01 - Part 3:
Requirements for PC-Connected Interface Devices - Supplemental Document.

Note: The Registered Application Provider Identifier (RID) returned by the OMNIKEY
Contactless Smart Card reader for storage cards (cards without a CPU) is A0 00 03 06 0A,
indicating a PC/SC compliant ATR generation.

http://www.pcscworkgroup.com/specifications/specdownload.php

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 26 of 102

6.2 iCLASS Card
Only access iCLASS cards through OMNIKEY’s proprietary scardsyn API. This synchronous
API contains a function that is dedicated to accessing contactless cards using the standard
PC/SC card handle.

OMNIKEY Contactless Smart Card readers expose all iCLASS functions necessary to access
any of the application areas on an iCLASS card. The two modes of communication
supported are:

1. Standard mode communication

2. Secured mode communication (OMNIKEY proprietary mode)

Note: OMNIKEY Contactless Smart Card readers do not allow WRITE access to the HID
application (1st application on page 0). For READ access to the HID application, secured
communication (available for firmware version 5.00 and greater) is mandatory.

Note: Standard readers provide secured mode communication only between standard HID
iCLASS. However, there is also a possibility for secured mode communication between HID
iCLASS Elite cards (available for firmware version 5.20 and greater). For details, contact
your local Sales Representative.

6.2.1 Card Access through SCardCLICCTransmit

SCardCLICCTransmit is the OMNIKEY proprietary function to access HID iCLASS cards
through the OMNIKEY synchronous API. It supports both, standard and secure
communication modes and is defined as follows:

OKERR ENTRY SCardCLICCTransmit (IN SCARDHANDLE ulHandleCard,
 IN PUCHAR pucSendData,
 IN ULONG ulSendDataBufLen,
 IN OUT PUCHAR pucReceivedData,
 IN OUT PULONG pulReceivedDataBufLen);

Parameter Description

ulHandleCard handle to the card, provided from the PC/SC smart card resource
manager after connecting to the card with SCardConnect

pucSendData buffer for data sent to the reader/card, typically a command APDU

ulSendDataBufLen length of the data to be sent

pucReceivedData buffer for data received from reader/card, typically data and status

pulReceivedDataBufLen before the call: length (in bytes) of the receive buffer
after the call: number of bytes actually received

Command Syntax

CLA INS P1 P2 Lc Input Data or Datagram*** Le
‘8x’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ... ‘xx’ (Lc bytes) ‘xx’

Response Syntax

Response Data or Datagram*** SW1 SW2
‘xx’ .. ‘xx’ (Le or max bytes) ‘xx’ ‘xx’

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 29 of 102 January 2015

6.3.2 Read Binary

The ReadBinary command is available for all blocks of the LRI64 chip.

Examples:

Reading all 15 blocks from 0 to 14

Command APDU: ‘FFB0000000’

Response APDE: ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx9000’

Attempt to read 16 blocks

Command APDU: ‘FFB0000010’

Response APDE: ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx6282’

The response is ‘6282’ or End of file reached before reading expected number of
bytes. Even though the warning ‘6282’ is returned, all bytes from block 0 up to block
14 are read correctly.

Read blocks 10 and 11 (2 bytes)

Command APDU: ‘FFB0000A02’

Response APDE: ‘xxxx9000’

Attempt to read an invalid block number:

Command APDU: ‘FFB0000F01’

Response APDE: ‘6A82’

The response is the error code ‘6A82’ because block number 15 does not exist.

6.4 ISO15693-3 Memory Card Support
For detailed information about supported ISO15693 Tags, reference Section 10 Reading
ISO15693, page 58.

READ BINARY and UPDATE BINARY is compliant to PS/SC2.01. See Section 4 PC/SC 2.0.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 30 of 102

7 Communication with MIFARE Plus
Depending on the card security level, the reader activates the MIFARE Plus card in the ISO
14443A Layer 3 or in the ISO 14443A Layer 4 (T=CL).

Security Level Protocol Type
MIFARE Plus SL 0 ISO 14443 A – 4

MIFARE Plus SL 1 ISO 14443 A – 3

MIFARE Plus SL 2 ISO 14443 A – 3

MIFARE Plus SL 3 ISO 14443 A – 4

Note: The OMNIKEY synchronous API does not support the new MIFARE Plus cards (for
example SL1 cards). Use the command set from PC/SC 2.01 part 3. The MIFARE functions
from the sample application, contactlessdemoVC and contactlessdemoVB require the
synchronous API. These applications do not work with MIFARE Plus cards.

7.1 ISO 14443 A – Part 4 card communication
If the card is activated in protocol layer 4, the application communicates with the MIFARE
Plus card by calling SCardTransmit. The card command is transferred directly to the
MIFARE Plus card by using the T=CL protocol layer. The T=CL protocol layer is completed
by the driver. The application uses this type of communication for all card commands in
SL0 and SL3. For MIFARE Plus details, reference the MIFARE Plus data sheet from NXP
(www.nxp.com).

The application executes the card provisioning in security level 0 or the AES authentication
in security level 3 by direct transferring the MIFARE Plus commands.

7.2 ISO 14443 A – Part 3 card communication
If activating the card in protocol layer 3, the application does not use the direct card
communication. For this type of communication, a transparent transmission channel to the
card is necessary. There is an amendment proposal for the PC/SC specification part 3 (HID
and NXP) in discussion with the PC/SC work group.

Because the standardization is not concluded, the OMNIKEY Contactless Smart Card
reader provides an HID proprietary transparent channel. In this channel the application
communicates with generic card commands. See Sections 7.3 Open Generic Session, 7.4
Generic Card Commands and 7.5 Close Generic Session.

http://www.nxp.com/

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 31 of 102 January 2015

7.3 Open Generic Session
Stop the driver activity for card tracking and initialize the generic command session. Take
the card control to the application.

INIT GENERIC SESSION Command APDU
Command Class INS P1 P2 Lc Data In Le
Init Session 0xFF 0xA0 0x00 0x07 0x03 0x01 0x00 0x01 -

INIT GENERIC SESSION Command Output
Data Out
SW1 SW2 = 0x9000

At first the application must send the following APDU with SCardTransmit.

Send FFA0000703010001

Receive 9000

7.4 Generic Card Commands
Write the MIFARE Plus command in a transparent channel to the card. The Application
sends the Generic Card Command APDU with SCardTransmit.

GENERIC CARD COMMAND APDU
Command Class INS P1 P2 Lc Data In Le
Card
Command 0xFF 0xA0 0x0

0
0x0
5 6+n 01 00 F3 00 00 64 + MIFARE Plus

command 00

Preamble MIFARE Plus card command Explanation
01 00 F3 00 00 64 E1 81 ISO14443-3 RATS

01 00 F3 00 00 64 0A 01 70 02 90 00 ISO14443-4 First Authentication

Never change the red labelled preamble.

The green labeled data field is the PCB and CID. The application is responsible for the
correct usage of the Protocol Control Byte (PCB) 0000 1010. The green labeled bit 0 is the
block number. See ISO 14443-4 clause 7.5.3 Block numbering rules.

GENERIC CARD COMMAND Output
Data Out
RF Controller Status MIFARE Plus card answer SW1 SW2
Byte1 Byte 2 Byte 3 … n-2 Byte n-1 Byte n

00 00
[PCB+CID] SC Data 0x9000 successful

[0A 01] 90 [XX XX … XX] 0x6400 no card answer (TimeOut)

08 04 0A 0x9000 successful ACK answer from
MIFARE card

08 04
one-byte value
from range:
00-09, 0B-0F

0x9000 successful NAK answer from
MIFARE card

The green labeled PCB, CID filed is only available if the card is switched to ISO14443-4. If
desired, leave the data field empty. The status code in this sample is successful code.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 32 of 102

7.4.1 MIFARE Plus commands with the GENERIC INTERFACE Command APDU
Samples

Switching to ISO14443 part 4 (RATS) Sample
Send FFA00005080100F3000064E08100
Receive 00000C757784024D46505F454E479000

First Authentication Sample
Send FFA000050C0100F30000640A017002900000
Receive 00000A0190XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX9000

SL1 authentication Sample
Send FFA00005090100F300006476049000
Receive 000090XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX9000

7.5 Close Generic Session
Continue the driver activity for card tracking and close the generic command session. Take
the card control from the application to the driver.

CLOSE GENERIC SESSION Command APDU
Command Class INS P1 P2 Lc Data In Le
Close
Session 0xFF 0xA0 0x00 0x07 0x03 0x01 0x00 0x02 -

INIT GENERIC SESSION Command Output
Data Out
SW1 SW2 = 0x9000

After the generic interface session, close the session. Do not skip this step.

The application must send the following APDU with SCardTransmit.

Send FFA0000703010002
Receive 9000

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 33 of 102 January 2015

8 OMNIKEY Contactless Smart Card Reader Keys
The OMNIKEY Contactless Smart Card reader has a set of built-in cryptographic keys, some
of which are implemented in volatile memory and others in non-volatile memory.

8.1 Key Numbering Scheme
Cryptographic keys are referenced by a unique key number between 0x00 and 0xFE. Each
key number refers to a key of pre-defined length for a specific card type. For cards such as
MIFARE and iCLASS, multiple key numbers are reserved.

The OMNIKEY key number is used to determine key usage, key length, and to map the
reader key to the third party card key.

Examples:

Reader Key number ‘0A’ refers to the 6 byte MIFARE key 10, KMIF10

Reader Key number ‘24’ refers to the 8 byte iCLASS Default key for application 1 on
page 1

See MIFARE and iCLASS for detailed documentation. Contact your card manufacturer for
information about any key values.

Keys Numbers and Key Names

Key # Key Name Key
Length

Key
Type Memory Type

6-byte (MIFARE) keys

‘00’ to
‘1F’

KMIF0 (MIFARE Key 0) to KMIF31 (MIFARE
Key 31)

6 bytes Card
Key

Non- volatile memory

8-byte (iCLASS) keys

‘20’ KIAMC (KMC0, Kc for application 2 of page
0 on Book 0 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘21’
KMDC HID Master Key (KMD0, Kd for
application 1 of page 0 on Book 0 of
iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘22’ RFU (previously used for HID Master
Key KMDO)

8 bytes Card
Key

Non-volatile memory

‘23’ KMC0 (Default Master Key for application
2 of page 0 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘24’ KMD1 (Default Master Key for application
1 of page 1 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘25’ KMC1 (Default Master Key for application
2 of page 1 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘26’ KMD2 (Default Master Key for application
1 of page 2 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘27’ KMC2 (Default Master Key for application
2 of page 2 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘28’ KMD3 (Default Master Key for application
1 of page 3 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘29’ KMC3 (Default Master Key for application
2 of page 3 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘2A’ KMD4 (Default Master Key for application
1 of page 4 of iCLASS card)

8 bytes Card
Key

Non-volatile memory

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 34 of 102

Key # Key Name Key
Length

Key
Type Memory Type

‘2B’ KMC4 (Default Master Key for application
2) of page 4 of iCLASS card

8 bytes Card
Key

Non- volatile memory

‘2C’ KMD5 (Default Master Key for application
1 of page 5 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘2D’ KMC5 (Default Master Key for application
2 of page 5 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘2E’ KMD6 (Default Master Key for application
1 of page 6 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘2F’ KMC6 (Default Master Key for application
2 of page 6 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘30’ KMD7 (Default Master Key for application
1 of page 7 of iCLASS card)

8 bytes Card
Key

Non-volatile memory

‘31’ KMC7 (Default Master Key for application
2 of page 7 of iCLASS card)

8 bytes Card
Key

Non- volatile memory

‘32’ KMTD (Master Transport Key for
application 1 of Picopass cards)

8 bytes Card
Key

Non volatile memory

‘33’ KMTC (Master Transport Key for
application 2 of Picopass cards)

8 bytes Card
Key

Non- volatile memory

‘34’
KMD0B1 (Default Master Key for
application 1 of page 0 on Book 1 of
iCLASS card)

8 bytes Card
Key

Non-volatile memory

‘35’..’7F’ RFU

16-byte keys

‘80’ KCUR (Custom read key) 16
bytes

Reader
Key

Non-volatile memory

‘81’ KCUW (Custom write Key) 16
bytes

Reader
Key

Non- volatile memory

‘82’ KENC (Card data encryption key) 16
bytes

Card
Key

Non- volatile memory

24- byte keys

‘B0’..’CF’ RFU

32-byte keys

‘D0’..’DF’ RFU

0xF0 to 0xFF are volatile keys

0xF0 KVAK (volatile application key) 8 bytes Card
Key

 Volatile memory

‘F1’...‘FF’ RFU

Note: OMNIKEY Contactless Smart Card reader firmware version 5.00 is the first to support
all keys listed above. Readers with firmware version 1.03 and 1.04 only support key
numbers 0x20 and 0xF0.

Key number 0x21 to Key number 0x31 (except 0x22) are the default keys for iCLASS cards.
Key number 0x32 and 0x33 are the default transport keys for Inside cards.

Keys 0x21 and 0x22 are stored in the reader. The remaining non-volatile keys 0x23 to 0x33
are stored in the registry.

Key 0x21 cannot be updated. Updates of key 0x22 are RFU and currently not supported.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 35 of 102 January 2015

8.2 Key Container and Slots
The OMNIKEY Contactless Smart Card reader key container is organized in fixed-length
key slots. These key slots allow easy usage of cryptographic keys. It is not necessary that
the host application knows anything about the physical storage location. Load keys into a
key container by referring to a key slot and a key number. Key access and usage are
managed by the reader firmware. For security purposes, keys can only be used and
updated, but they can never be read. As an additional security measure, keys are diversified
with two 16-byte secret keys before being committed to a key container.

Key slot properties are available for advanced users. This feature is designed to ensure
proper use of a single key in case there are more keys than key slots.

Key Container of OMNIKEY Contactless Smart Card Reader

Key Slot
(KS) Number

KS
Length

Default
Stored Key
Name

Default
Stored Key
Number

Remarks

‘00’ 12 KMIF0 ’00’ No key slot information is available for
these key slots. Retrieving information
will return SW1SW2 6300.

…. 12 ------- ----

‘1F’ 12 KMIF31 ’1F’

‘20’ 16 KCUR ’80’

Key slot information is available.

’21’ 16 KCUW ’81’

’22’ 16 KENC ’82’

’23’ 08 KIAMC ’20’

'24’ 08 KMDO ’22’

’25’ 08 KMDC ’21’

’26’ 08 KVAK ’F0’
No key slot information is available for
these key slots. Retrieving information
will return SW1SW2 6300.

’27’ 08 KMC0 ’23’

Key slot information is available.

’28’ 08 KMD1 ’24’

’29’ 08 KMC1 ’25’

’2A’ 08 KMD2 ’26’

’2B’ 08 KMC2 ’27’

’2C’ 08 KMD3 ’28’

’2D’ 08 KMC3 ’29’

’2E’ 08 KMD4 ’2A’

’2F’ 08 KMC4 ’2B’

’30’ 08 KMD5 ’2C’

’31’ 08 KMC5 ’2D’

’32’ 08 KMD6 ’2E’

’33’ 08 KMC6 ’2F’

’34’ 08 KMD7 ’30’

’35’ 08 KMC7 ’31’

’36’ 08 KMTD ’32

’37’ 08 KMTC ’33’

’38’ 08 KMD0B1 ’34’

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 37 of 102 January 2015

9 Standard Communication with iCLASS Card
Standard communication means there is no authentication of the host application (for
example Microsoft Windows) to the OMNIKEY 5x21-CL. Unless the card itself has built-in
mechanisms for confidential communication, the channel between host and reader is
unprotected, exposing the connecting USB cable to eavesdropping.

9.1 APDU Structure for Standard Communication
iCLASS cards are supported through ISO7816 compliant APDU exchange. Command and
response APDUs are exchanged through the OMNIKEY proprietary API function
SCardCLICCTransmit residing in the OMNIKEY synchronous API.

Command APDU (through pucSendData)
CLA INS P1 P2 Lc Data in Le
‘80’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ … ‘xx’ ‘xx’

Response APDU (through pucReceivedData)
Data out SW2 SW1
‘xx’ … ‘xx’ ‘xx’ ‘xx’

9.2 Commands Available in Standard Communication Mode
Card commands are referred to by their respective instruction (INS) byte as part of a
command APDU sent by SCardCLICCTransmit. The following table lists all INS values
supported by the OMNIKEY Contactless Smart Card reader in standard communication
mode.

List of Supported INS bytes (APDU Commend Set)
Instruction (INS) Description Command Type
‘82’ Load Key reader command

‘C4’ GetKeySlotInfo reader command

‘A6’ Select Page card command

‘88’ Authenticate card command

‘B0’ Read card command

‘D6’ Update card command

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 40 of 102

Response Syntax
Data Field Empty
SW1 SW2 status word as described below

‘90’ ‘00’ success

‘63’ ‘00’ no further information given (warning)

‘63’ ‘81’ loading/updating is not allowed

‘63’ ‘82’ card key not supported

‘63’ ‘83’ reader key not supported

‘63’ ‘84’ plaintext transmission not supported

‘63’ ‘85’ secured transmission not supported

‘63’ ‘86’ volatile memory is not available

‘63’ ‘87’ non-volatile memory is not available

‘63’ ‘88’ key number not valid

‘63’ ‘89’ key length is not correct

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status
words common to all iCLASS access functions.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 81 of 102 January 2015

A.2 Reader Related Functions
Reader related functions do not require a card in the field.

To store a MIFARE key, complete the following:

• Define a key number to determine where to store the key.

• Select plain or secured as the mode of the key transmission. For secured
transmissions, use transmission key number 0x80 or 0x81.

• Enter the key in hex string format to the text field MIFARE Key. For plain
transmissions enter a 6 byte, 12 hex digit value (no spaces). For secured transmission
enter an 8 byte value.

• Click on the Write MIFARE Key to Reader button to load the key to reader memory.

A.3 MIFARE Functions Using Synchronous API
Before using the MIFARE Functions using Sync API, authenticate the card. (MIFARE
UltraLight does not need authentication).

To authenticate to a block of the card complete the following:

• In the field Block Nr, enter the authentication block number.

• In the field Access Option choose to supply a key number or plain key.

• In the field Authentication Mode choose Mode A or B.

• Press the Authenticate button.

Upon successful authentication, you can read and write data blocks and use the increment
and decrement functions.

A.4 PC/SC 2.01
Enter an APDU according to PC/SC 2.01 to access storage cards such as MIFARE cards
directly without using the OMNIKEY proprietary synchronous API.

A.5 ISO 7816 - APDU
Enter an APDU for your CPU (asynchronous) card and send the APDU the same way as an
ISO7816 contact card.

A.6 iCLASS Standard Mode
Present an iCLASS card to the reader RF field, and send APDUs directly to the card, see
Section 9 Standard Communication with iCLASS Card. This is an easy way of experimenting
with the available functions.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 82 of 102

A.7 Code Examples
This section lists coding examples for a PC/SC 2.01 compliant implementation.

A.7.1 Getting the Card UID (PC/SC 2.01)

The following function retrieves the unique card ID (UID) currently connected to the card
through the air interface. Use the UID as the card serial number. The UID is available for
every ISO 14443 A/B or ISO 15693 compliant cards. It does not matter whether the card is
a CPU or storage card. This makes GetUID the ideal candidate for Hello Card type
applications. If you do not have access to application keys, the UID serves as a valuable
identifier allowing card lookup on a backend database.

BOOLEAN GetUID(UCHAR *UID, int &sizeofUID)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xCA;//INS
 ucByteSend[2] = 0x00;//P1
 ucByteSend[3] = 0x00;//P2
 ucByteSend[4] = 0x00;//Le
 ulnByteSend = 5;
 printf(\nRetrieving the UID..........);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 sizeofUID = dwRecvLength-2;
 memcpy(UID,ucByteReceive,sizeofUID);
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 83 of 102 January 2015

A.7.2 Loading a MIFARE Key (PC/SC 2.01)

The following code loads a MIFARE key to the reader. The key is stored in non-volatile
memory. Once loaded, it remains available throughout the reader session.

BOOLEAN LoadKey(UCHAR ucKeyNr, UCHAR *ucKey, UCHAR ucKeyLength)
{
 ucByteSend[0] = 0xFF; //CLA
 ucByteSend[1] = 0x82; //INS
 ucByteSend[2] = 0x20; //P1 card key, plain transmission, non-volatile
memory
 ucByteSend[3] = ucKeyNr; //P2 key number for MIFARE could be 0x00 to 0x31)
 ucByteSend[4] = ucKeyLength;//Lc
 memcpy(ucByteSend+5,ucKey, ucKeyLength);
 ulnByteSend = 5+ucKeyLength;
 printf(\nLoading Key to the reader..........);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength -2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 84 of 102

A.7.3 MIFARE 1K/4K Authenticate (PC/SC 2.01)
The following code demonstrates how to authenticate a MIFARE card.
BOOLEAN Authenticate(UCHAR BlockNr, UCHAR ucKeyNr, UCHAR ucKeyType)
{
 ucByteSend[0] = 0xFF; // CLA
 ucByteSend[1] = 0x88; // INS
 ucByteSend[2] = 0x00; // P1, MIFARE Block Number MSB, for MIFARE it is
always 0x00
 ucByteSend[3] = BlockNr; // MIFARE Block Number LSB
 ucByteSend[4] = ucKeyType; // P3
 ucByteSend[5] = ucKeyNr;
 ulnByteSend = 6;
 printf(\nAuthenticating);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 85 of 102 January 2015

A.7.4 MIFARE 1K/4K Write (PC/SC 2.01)
BOOLEAN UpdateBinary(UCHAR BlockNr, UCHAR *ucDataToWrite, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD6;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always
0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataToWrite, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf(\nUpdating Block);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 86 of 102

A.7.5 MIFARE 1K/4K Read (PC/SC 2.01)
BOOLEAN ReadBinary(UCHAR BlockNr, UCHAR *ucDataRead, UCHAR &ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xB0;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always
0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = 0x10;//Le
 ulnByteSend = 5;
 dwRecvLength = 255;
 printf(\nReading Block);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 ucDataLenght = (unsigned char)dwRecvLength -2;
 memcpy(ucDataRead,ucByteReceive,ucDataLenght);
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 87 of 102 January 2015

A.7.6 MIFARE 1K/4K Increment (OMNIKEY Proprietary API)
BOOLEAN Increment(UCHAR BlockNr, UCHAR *ucDataTobeIncremented, UCHAR
ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD4;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always
0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeIncremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf(\nIncrementing Block);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 88 of 102

A.7.7 MIFARE 1K/4K Decrement (OMNIKEY Proprietary API)
BOOLEAN Decrement(UCHAR BlockNr, UCHAR *ucDataTobeDecremented, UCHAR
ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD8;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always
0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeDecremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf(\nDecrementing Block);
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf(\nProblem in SCardTransmit, Erro rcode = 0x%04X,SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] !=
0x00)
 {
 printf(\nWrong return code: %02X%02X,
 ucByteReceive[dwRecvLength- 2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
}
 return TRUE;
}

A.7.8 MIFARE Emulation Mode (OMNIKEY Proprietary API)

With the following code switch the MIFARE Emulation Mode on and off.

#define CM_IOCTL_SET_RFID_CONTROL_FLAGS SCARD_CTL_CODE(3213)
DWORD dwActiveProtocol;
//DWORD dwControlFlag = 0xFFFFFFFF // On
DWORD dwControlFlag = 0x00000004 // On
//DWORD dwControlFlag = 0x00000000 // Off

BYTE InBuffer[16];
BYTE OutBuffer[16];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD *Mask = (DWORD *)InBuffer;
DWORD *Value = (DWORD *)InBuffer+1;
DWORD dwControlCode = CM_IOCTL_SET_RFID_CONTROL_FLAGS;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

*Mask = 0x00000004;
*Value = dwControlFlag & *Mask;
dwInBufferSize = 8;
dwOutBufferSize = 0;
dwBytesReturned = 0;

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 89 of 102 January 2015

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status == SCARD_S_SUCCESS)
{
 if(dwControlFlag)
 sprintf(szText,MIFARE\t);
else
 sprintf(szText,T=CL\t);
}
else
{
 sprintf(szText,IO Cntrol error\r);
}

// The card is disconnected after changing the MIFARE emulation mode
do
{
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_EMPTY;
 sReaderState.dwEventState = SCARD_STATE_EMPTY;
 SCardGetStatusChange(hContext,50,&sReaderState,1);
}
while((sReaderState.dwEventState & SCARD_STATE_PRESENT) == 0);

A.7.9 iCLASS Select Page (OMNIKEY Proprietary API)

The following code selects page 0x01 of an 8x2KS iCLASS card and returns the card serial
number.

//Select page 0x02 of a 8x2KS iCLASS card
UCHAR ucDataSend[7] = {0};
ULONG ulNoOfDataSend = 7;
UCHAR ucReceivedData[64] = {0};
ULONG ulNoOfDataReceived = 64;

ucDataSend [0] = 0x80 //CLA, standard mode
ucDataSend [1] = 0xA6 //INS
ucDataSend [2] = 0x01 //P1
ucDataSend [3] = 0x04 //P2, return card serial number
ucDataSend [4] = 0x01 //Lc
ucDataSend [5] = 0x01 //Page number
ucDataSend [6] = 0x08 //Le

SCard_Status = SCardCLICCTransmit(hCard,ucDataSend,ulNoOfDataSend,
 ucReceivedData,&ulNoOfDataReceived);
if(SCard_Status!= SCARD_S_SUCCESS)
{
 printf(Error in SCardCLICCTransmit, with error code %8X, SCard_Status);
 exit(-1);
}

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 90 of 102

A.7.10 EMVCo Contactless Level 2 Transactions

The following code example shows a typical OMNIKEY 5321 PAY transaction loop.

SCARDCONTEXT hContext;
SCARDHANDLE hCard;
SCARD_READERSTATE sReaderState;
CHAR* szReaderName;
DWORD dwShareMode;
DWORD dwPreferredProtocols;
DWORD dwActiveProtocols;
UCHAR ucByteSend[256];
DWORD dwNByteSend;
UCHAR abByteReceive[256];
DWORD dwRecvLength;
DWORD SCard_Status;

UCHAR abSelectPPSE[20] = {0x00,0xA4,0x04,0x00, //
CLA,INS,..
 0x0E, // Lc
 0x32,0x50,0x41,0x59,0x2E,0x53,0x59, //
Data field
 0x53,0x2E,0x44,0x44,0x46,0x30,0x31,
 0x00}; //
Le

// TODO: Code for PAY application

do
{
 // wait for card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_EMPTY;
 sReaderState.dwEventState = SCARD_STATE_EMPTY;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_PRESENT) == 0);

 if ((sReaderState.dwEventState & SCARD_STATE_MUTE) != 0)
 {
 // Card present, Collision detected

 // TODO: Code for PAY application

 // wait for remove card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_PRESENT;
 sReaderState.dwEventState = SCARD_STATE_PRESENT;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_EMPTY) == 0);

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 91 of 102 January 2015

 continue;
 }

 // TODO: Code for PAY application

 // Connect card

 dwShareMode = SCARD_SHARE_SHARED;
 dwPreferredProtocols = SCARD_PROTOCOL_T1;

 SCard_Status = SCardConnect(hContext,
 szReaderName,
 dwShareMode,
 dwPreferredProtocols,
 &hCard,
 &dwActiveProtocols);

 // TODO: Code for PAY application

 memcpy(abByteSend, abSelectPPSE, 20);
 dwNByteSend = 20;
 do
 {
 dwRecvLength = 256;
 SCard_Status = SCardTransmit (hCard,
 SCARD_PCI_T1,
 abByteSend,
 dwNByteSend,
 NULL,
 abByteReceive,
 &dwRecvLength);

 // TODO: Code for PAY application

 }
 while(/*TODO: Code for PAY application*/);

 // now disconnect the card
 SCard_Status = SCardDisconnect(hCard, SCARD_UNPOWER_CARD);
 // TODO: Code for PAY application

 // wait for remove card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_PRESENT;
 sReaderState.dwEventState = SCARD_STATE_PRESENT;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_EMPTY) == 0);
 // TODO: Code for PAY application
}
while(/*TODO: Code for PAY application*/);
// TODO: Code for PAY application

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 92 of 102

A.7.11 Set RFID operating mode

The following code example shows setting the operating mode:

#define CM_IOCTL_SET_OPERATION_MODE SCARD_CTL_CODE (3107)
#define OPERATION_MODE_RFID_ISO 0x10
#define OPERATION_MODE_RFID_PAYPASS 0x11

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode = CM_IOCTL_SET_OPERATION_MODE;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));
*InBuffer = OPERATION_MODE_RFID_PAYPASS
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl (hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 93 of 102 January 2015

A.7.12 PayPass Signal MAIN LED

The following code example shows an application using the reader main LED.

#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define PAYPASS_SIGNAL_MAINLED 0x21

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode;
BYTE bUSBMode = 0x01; // USB Pipe Control
BYTE bReaderLEDs = 0x02; // red LED on
BYTE bLEDMode = 0x03; // application controlled

// TODO: Code for PAY application

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = PAYPASS_SIGNAL_MAINLED;
InBuffer[1] = bUSBMode;
InBuffer[2] = (bReaderLEDs) & 0x03;
InBuffer[3] = bLEDMode;
dwInBufferSize = 4;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status != SCARD_S_SUCCESS)
{

 // TODO: Code for PAY application
}
// TODO: Code for PAY application

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 94 of 102

A.7.13 PayPass Signal Additional LEDs

The following code example shows an application using the three additional LEDs.

#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define PAYPASS_SIGNAL_ADDLED 0x22

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode;

BYTE bUSBMode = 0x01; // USB Pipe Control
BYTE bReaderLEDs = 0x1C; // all additional green LEDs on

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = PAYPASS_SIGNAL_ADDLED;
InBuffer[1] = bUSBMode;
InBuffer[2] = (bReaderLEDs >> 2) & 0x07;
dwInBufferSize = 3;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status != SCARD_S_SUCCESS)
{
 // TODO: Code for PAY application

}

// TODO: Code for PAY application

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 95 of 102 January 2015

A.7.14 PayPass Signal Tone

The following code example shows an application using the buzzer.

#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define ACOUSTIC_SIGNAL_BEEPER_ON 0x10
#define ACOUSTIC_SIGNAL_BEEPER_OFF 0x11

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = ACOUSTIC_SIGNAL_BEEPER_ON;
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

// TODO: Code for PAY application

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = ACOUSTIC_SIGNAL_BEEPER_OFF;
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

// TODO: Code for PAY application

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 96 of 102

Appendix: B Accessing iCLASS Memory
The following describes the free zones of two typical iCLASS memory layouts.

Memory Layout
Shown is the memory layout of an iCLASS 2KS, iCLASS 16KS or page 0 of an iCLASS 8x2KS
card.

Block Number Block Description (block size eight bytes)

‘00’ card serial number

‘01’ configuration block

’02’ e-Purse

‘03’ Kd (so-called debit key, key for application 1)

’04’ Kc (so-called credit key, key for Application 2)

’05’ application issuer area

‘06’

HID application ….

’12’

’13’

Free zones in iCLASS 2KS, iCLASS 16KS or page 0 of iCLASS 8x2KS
….

‘1F’ (2KS)
‘FF’ (16KS)

Shown is the memory layout of an iCLASS 8x2KS on pages 1 to 7.

Block Size: 8 bytes

’00’ card serial number

’01’ configuration block

’02’ e-Purse

’03’ Kd (so-called debit key, key for application 1)

’04’ Kc (so-called credit key, key for Application 2)

’05’ application issuer area

’06’

application 1 (free zones in iCLASS 8x2KS other than page 0) ….

‘xx’

‘xx’+1

application 2 (free zones in iCLASS 8x2KS other than page 0) ….

‘1F’

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 97 of 102 January 2015

Appendix: C Application 2 - Assigning Space
By default, iCLASS cards have the application limit set to the last byte of its respective
memory area. This means the complete memory area is reserved for application 1 and the
size of application 2 is set to zero. The application limit can be set to a different block
number to support an additional application. To do this, the page’s configuration block
must be overwritten.

1. Select the page you want to configure.

2. Authenticate with the selected page Kd.

3. Read 8 bytes from block 0x01 – the configuration block.

4. Replace the first byte with the block number ‘xx’ of the new application limit.

5. Leave the remaining bytes of the configuration block unchanged and write all 8 bytes
back to the configuration block 0x01.

6. Remove the card.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 98 of 102

Appendix: D iCLASS Read/Write Memory - 2KS, 16KS or 8x2KS
page 0

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Authenticate with KMC0 , (P1 = 0x01, P2 = 0x23).
If the key is not an iCLASS default key, the new key has to be loaded as KIAMC or KVAK ,

and in the authenticate command the key number of KIAMC or KVAK must be used.

5. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

6. For secured mode: End Session.

7. Disconnect from card.

8. Remove card.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 99 of 102 January 2015

Appendix: E iCLASS 8x2KS Card - Pages 1 to 7 Read/Write
Memory

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Select page N (N = 1 to 7).

5. Authenticate with KMDN / KMCN (P1 = 0x00 for KMDN ,or 0x01 for KMCN , P2 = KMDN ,/
KMCN (See Section 8.1 Key Numbering Scheme).

6. If the key is other than iCLASS default key, the new key has to be loaded as KIAMC or
KVAK , and in the authenticate command the key number of KIAMC or KVAK must be
used.

7. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

8. For secured mode: End Session.

9. Disconnect card.

10. Remove card.

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

January 2015 Page 100 of 102

Appendix: F Terms and Abbreviations
The following lists abbreviations used throughout this document.

CSNR Card Serial Number

HDH Host Data Header

INSData Instruction Specific Data

KCUR Customer Read Key

KCUW Customer Write Key

KDOKM OMNIKEY Diversified Master Key

KENC Card Data Encryption Key

KIAMC Key for Application 2 at page 0

KMCN Page N Application 2’s Master Key of iCLASS card

KMDC HID Master Key Current

KMDN Page N Application 1’s Master Key of iCLASS card

KMDNB1 Page N Application 1’s on Book 1 Master Key of iCLASS card

KMDO HID Master Key Old

KMTD PicoPass Master Transport key for application 1

KMTC PicoPass Master Transport key for application 2

KOKM OMNIKEY Master Key

KS Session Key

KVAK Any Volatile Application Master Key

LcINS Instruction specific data (INSData) length.

LcR Card Response data length

PCD Proximity Coupling Device

PICC Proximity IC Card

PPSE Proximity Payment System Environment

RDH Reader Data Header

RSNR Reader Serial Number

OMNIKEY Contactless Smart Card Readers Developers Guide, 5321-903, Rev. B.4

Page 101 of 102 January 2015

Appendix: G References

[DESFIRE] MIFARE DESFire Data Sheets

http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
[EMVCo] Europay Mastercard Visa Corporation

http://www.emvco.com/approvals.aspx?id=86
[ICLASSD] iCLASS card specifications from HID.
[iCODE SL2] ICODE SL2 Data Sheet

http://www.nxp.com/acrobat_download/other/identification/SL113730.pdf
[ISO7816-4] Information Technology Identification Cards Integrated Circuit(s) Cards with Contacts, Part 4:

Inter-industry Commands for Interchange
[LRI64] ST Microelectronics datasheet for LRI64
[MIFARE] MIFARE Data Sheets

http://www.nxp.com/acrobat_download2/other/identification/M001053_MF1ICS50_rev5_3.
pdf

[MSDNLIB] Microsoft Developer Network Library; http://msdn.microsoft.com/library/
[PCSC_2.01] PC/SC Workgroup Specifications 2.01

http://www.pcscworkgroup.com/
[PICO2KS] PICOTAG and PICOCRYPT secured 2KS data sheet from the Inside Contactless
[PICO16KS] PICOTAG and PICOCRYPT secured 16KS data sheet from the Inside Contactless

http://www.emvco.com/approvals.aspx?id=86
http://www.nxp.com/acrobat_download/other/identification/SL113730.pdf
http://www.nxp.com/acrobat_download2/other/identification/M001053_MF1ICS50_rev5_3.pdf
http://www.nxp.com/acrobat_download2/other/identification/M001053_MF1ICS50_rev5_3.pdf
http://msdn.microsoft.com/library/
http://www.pcscworkgroup.com/

hidglobal.com

	OMIKEY
	Synchronous Card Special Features
	1 Purpose
	2 Contactless Reader Coverage
	3 Getting Started
	3.1 Driver Installation
	3.1.1 Reader Name for Contact/Contactless Slot

	3.2 OMNIKEY Workbench
	3.2.1 PC/SC Functionality and Reader Availability
	3.2.2 Driver Version Detection
	3.2.3 OMNIKEY Proprietary API Detection
	3.2.4 Card and Reader Detection
	3.2.5 Card Type Detection and RFID Settings
	3.2.6 Air Interface Baud Rate Configuration

	4 PC/SC 2.0
	4.1 How to Access Contactless Cards through PC/SC
	4.2 ATR Generation
	4.2.1 CPU Cards
	4.2.2 Storage Cards

	5 Accessing Asynchronous Cards
	5.1 MIFARE DESFire Card
	5.1.1 Example: Write Card Data through ISO 7816-4 Framed APDU
	5.1.2 Example: Read Card Data through ISO 7816-4 Framed APDU

	6 Accessing Synchronous Cards (Storage)
	6.1 MIFARE Card
	6.1.1 MIFARE Increment (Card Command)
	Command Syntax
	Response Syntax
	6.1.2 MIFARE Decrement (Card Command)
	Command Syntax
	Response Syntax
	6.1.3 MIFARE Emulation Mode
	6.1.4 MIFARE Application Directory (MAD)

	6.2 iCLASS Card
	6.2.1 Card Access through SCardCLICCTransmit

	6.3 ST LRI64 Support (PC/SC 2.0 add-on)
	6.3.1 Update Binary
	6.3.2 Read Binary

	6.4 ISO15693-3 Memory Card Support

	7 Communication with MIFARE Plus
	7.1 ISO 14443 A – Part 4 card communication
	7.2 ISO 14443 A – Part 3 card communication
	7.3 Open Generic Session
	INIT GENERIC SESSION Command APDU
	INIT GENERIC SESSION Command Output

	7.4 Generic Card Commands
	GENERIC CARD COMMAND APDU
	GENERIC CARD COMMAND Output
	7.4.1 MIFARE Plus commands with the GENERIC INTERFACE Command APDU Samples

	7.5 Close Generic Session
	CLOSE GENERIC SESSION Command APDU
	INIT GENERIC SESSION Command Output

	8 OMNIKEY Contactless Smart Card Reader Keys
	8.1 Key Numbering Scheme
	8.2 Key Container and Slots
	8.3 Key Update Rules

	9 Standard Communication with iCLASS Card
	9.1 APDU Structure for Standard Communication
	9.2 Commands Available in Standard Communication Mode
	9.2.1 Select Page (Card Command)
	Response Syntax
	9.2.2 Load Key
	9.2.3 GetKeySlotInfo (Reader Command)
	Command Syntax
	Response Syntax
	Key Information (contained in Data Field)
	9.2.4 Authenticate (Card Command)
	Command Syntax
	Response Syntax
	9.2.5 Read (Card Command)
	Command Syntax
	Response Syntax
	9.2.6 Update (Card Command)

	9.3 Communication in Standard Mode

	10 Secured Communication with the iCLASS Card
	10.1 Multi-Step Approach to a Secure Card Reader System
	10.1.1 Authenticity between Host and Reader
	10.1.2 Confidentiality of USB Data Exchange
	10.1.3 Integrity of Transmitted Data
	10.1.4 Authenticity between Reader and Card
	10.1.5 Integrity of the Radio Frequency (RF) Transmission
	10.1.6 Confidentiality of the RF Transmission
	10.1.7 Authentication of the Host for Read/Write Session
	10.1.8 Protection against Known Attacks

	10.2 APDU Structure for Secured Communication
	Command Syntax
	Input Datagram (sent to the reader)
	Response Syntax
	10.2.1 Data Header (DH)
	Data Header
	10.2.2 Signature Generation
	10.2.3 Session Key Generation
	10.2.4 Proprietary Host and Reader Datagram Example

	10.3 Instructions (INS) for Secured Communication
	List of INS bytes for Secured Communication
	10.3.1 Manage Session (Reader Command)
	Command Syntax
	Response Syntax
	10.3.2 Select Page (Card Command)
	10.3.3 Load Key (Reader Command)
	10.3.4 Authenticate (Card Command)
	10.3.5 Read (Card Command)
	10.3.6 Update (Card Command)
	10.3.7 GetKeySlotInfo (Reader Command)
	10.3.8 Update Card Key

	10.4 Communication at Secured Mode
	10.5 Session at Secured Mode APDUs Example

	11 Reading ISO15693
	11.1 Products
	11.2 Tags
	Support for ICODE tags

	11.3 Commands
	11.3.1 Get Data
	GET DATA Command APDU
	P1/P2 denotation
	GET DATA Command Output
	SW1SW2 Examples
	11.3.2 Put Data
	Put Data Command APDU
	Put Data bytes
	Put Data Flag denotation for version 0x01
	Put data Command Error Codes
	11.3.3 Lock
	Lock APDU
	Lock Flag denotation for version 0x01
	Lock Command Error Codes
	11.3.4 Get Security Status
	Get Security Status Command APDU
	Get Security Status data bytes
	Get Security Status Flag denotation for version 0x01
	Get Security Status Error Codes
	11.3.5 Read Binary Command
	11.3.6 Update Binary Command
	11.3.7 Update Single Byte Command

	12 OMNIKEY 5321 PAY Application Interface
	12.1 PayPass Card Transactions
	12.2 LED and Buzzer Control
	12.2.1 SIGNAL Command – PayPass Signal
	12.2.2 SIGNAL Command – PayPass Signal MAIN LED
	12.2.3 SIGNAL Command – PayPass Signal Additional LEDs
	Summary of Param2
	12.2.4 SIGNAL Command – PayPass Signal Tone

	12.3 Switch-over the Operating Mode
	Parameter for IO-Control Set RFID Operation Mode

	13 Driver Configuration via ProxFormat
	13.1 Overview
	13.2 ATR Format
	13.2.1 ATR Example

	13.3 Available ProxFormat Settings
	13.3.1 ProxFormat Settings on Systems Running Windows
	13.3.2 ProxFormat Settings on Systems Running Linux and MacOS X

	14 ProxFormat Settings
	14.1 Wiegand Raw Data Mode
	14.2 Standard Format Modes
	14.3 Automatic Mode
	14.4 Custom Format Mode
	14.4.1 CustomProxFormat Settings

	14.5 Example: H10301 PROX Card
	14.5.1 Standard Format
	14.5.2 Wiegand Raw Data
	14.5.3 CustomProxFormat Settings
	14.5.4 ATRs of a H10301 Card

	14.6 Example: H10302 PROX Card
	14.6.1 Standard Format
	14.6.2 Wiegand Raw Data
	14.6.3 CustomProxFormat Settings
	14.6.4 ATRs of a H10302 Card

	14.7 Example: H10304 PROX Card
	14.7.1 Standard Format
	14.7.2 Wiegand Raw Data
	14.7.3 CustomProxFormat Settings
	14.7.4 ATRs of a H10304 Card

	14.8 Example: Corp 1000 PROX Card
	14.8.1 Standard Format
	14.8.2 Wiegand Raw Data
	14.8.3 CustomProxFormat Settings
	14.8.4 ATRs of a Corp 1000 Card

